3.627 \(\int \frac{\sqrt{d+e x}}{(a-c x^2)^2} \, dx\)

Optimal. Leaf size=194 \[ -\frac{\left (\frac{2 \sqrt{c} d}{\sqrt{a}}-e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{4 a c^{3/4} \sqrt{\sqrt{c} d-\sqrt{a} e}}+\frac{\left (\frac{2 \sqrt{c} d}{\sqrt{a}}+e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{4 a c^{3/4} \sqrt{\sqrt{a} e+\sqrt{c} d}}+\frac{x \sqrt{d+e x}}{2 a \left (a-c x^2\right )} \]

[Out]

(x*Sqrt[d + e*x])/(2*a*(a - c*x^2)) - (((2*Sqrt[c]*d)/Sqrt[a] - e)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c
]*d - Sqrt[a]*e]])/(4*a*c^(3/4)*Sqrt[Sqrt[c]*d - Sqrt[a]*e]) + (((2*Sqrt[c]*d)/Sqrt[a] + e)*ArcTanh[(c^(1/4)*S
qrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(4*a*c^(3/4)*Sqrt[Sqrt[c]*d + Sqrt[a]*e])

________________________________________________________________________________________

Rubi [A]  time = 0.186265, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {737, 827, 1166, 208} \[ -\frac{\left (\frac{2 \sqrt{c} d}{\sqrt{a}}-e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{4 a c^{3/4} \sqrt{\sqrt{c} d-\sqrt{a} e}}+\frac{\left (\frac{2 \sqrt{c} d}{\sqrt{a}}+e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )}{4 a c^{3/4} \sqrt{\sqrt{a} e+\sqrt{c} d}}+\frac{x \sqrt{d+e x}}{2 a \left (a-c x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/(a - c*x^2)^2,x]

[Out]

(x*Sqrt[d + e*x])/(2*a*(a - c*x^2)) - (((2*Sqrt[c]*d)/Sqrt[a] - e)*ArcTanh[(c^(1/4)*Sqrt[d + e*x])/Sqrt[Sqrt[c
]*d - Sqrt[a]*e]])/(4*a*c^(3/4)*Sqrt[Sqrt[c]*d - Sqrt[a]*e]) + (((2*Sqrt[c]*d)/Sqrt[a] + e)*ArcTanh[(c^(1/4)*S
qrt[d + e*x])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]])/(4*a*c^(3/4)*Sqrt[Sqrt[c]*d + Sqrt[a]*e])

Rule 737

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(x*(d + e*x)^m*(a + c*x^2)^(p + 1)
)/(2*a*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(d*(2*p + 3) + e*(m + 2*p + 3)*x)*(a + c*x^2
)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 0] && (LtQ[m, 1]
|| (ILtQ[m + 2*p + 3, 0] && NeQ[m, 2])) && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 827

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2, Subst[Int[(e*f
 - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 && NeQ[c*d^2 + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x}}{\left (a-c x^2\right )^2} \, dx &=\frac{x \sqrt{d+e x}}{2 a \left (a-c x^2\right )}-\frac{\int \frac{-d-\frac{e x}{2}}{\sqrt{d+e x} \left (a-c x^2\right )} \, dx}{2 a}\\ &=\frac{x \sqrt{d+e x}}{2 a \left (a-c x^2\right )}-\frac{\operatorname{Subst}\left (\int \frac{-\frac{d e}{2}-\frac{e x^2}{2}}{-c d^2+a e^2+2 c d x^2-c x^4} \, dx,x,\sqrt{d+e x}\right )}{a}\\ &=\frac{x \sqrt{d+e x}}{2 a \left (a-c x^2\right )}-\frac{\left (\frac{2 \sqrt{c} d}{\sqrt{a}}-e\right ) \operatorname{Subst}\left (\int \frac{1}{c d-\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{4 a}+\frac{\left (2 \sqrt{c} d+\sqrt{a} e\right ) \operatorname{Subst}\left (\int \frac{1}{c d+\sqrt{a} \sqrt{c} e-c x^2} \, dx,x,\sqrt{d+e x}\right )}{4 a^{3/2}}\\ &=\frac{x \sqrt{d+e x}}{2 a \left (a-c x^2\right )}-\frac{\left (\frac{2 \sqrt{c} d}{\sqrt{a}}-e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{4 a c^{3/4} \sqrt{\sqrt{c} d-\sqrt{a} e}}+\frac{\left (2 \sqrt{c} d+\sqrt{a} e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d+\sqrt{a} e}}\right )}{4 a^{3/2} c^{3/4} \sqrt{\sqrt{c} d+\sqrt{a} e}}\\ \end{align*}

Mathematica [A]  time = 0.308631, size = 267, normalized size = 1.38 \[ \frac{\left (\sqrt{c} d-\sqrt{a} e\right ) \left (\left (c x^2-a\right ) \sqrt{\sqrt{a} e+\sqrt{c} d} \left (\sqrt{a} e+2 \sqrt{c} d\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{a} e+\sqrt{c} d}}\right )-2 \sqrt{a} c^{3/4} x \sqrt{d+e x} \left (\sqrt{a} e+\sqrt{c} d\right )\right )-\left (c x^2-a\right ) \sqrt{\sqrt{c} d-\sqrt{a} e} \left (\sqrt{a} \sqrt{c} d e-a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{d+e x}}{\sqrt{\sqrt{c} d-\sqrt{a} e}}\right )}{4 a^{3/2} c^{3/4} \left (a-c x^2\right ) \left (a e^2-c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/(a - c*x^2)^2,x]

[Out]

(-(Sqrt[Sqrt[c]*d - Sqrt[a]*e]*(2*c*d^2 + Sqrt[a]*Sqrt[c]*d*e - a*e^2)*(-a + c*x^2)*ArcTanh[(c^(1/4)*Sqrt[d +
e*x])/Sqrt[Sqrt[c]*d - Sqrt[a]*e]]) + (Sqrt[c]*d - Sqrt[a]*e)*(-2*Sqrt[a]*c^(3/4)*(Sqrt[c]*d + Sqrt[a]*e)*x*Sq
rt[d + e*x] + Sqrt[Sqrt[c]*d + Sqrt[a]*e]*(2*Sqrt[c]*d + Sqrt[a]*e)*(-a + c*x^2)*ArcTanh[(c^(1/4)*Sqrt[d + e*x
])/Sqrt[Sqrt[c]*d + Sqrt[a]*e]]))/(4*a^(3/2)*c^(3/4)*(-(c*d^2) + a*e^2)*(a - c*x^2))

________________________________________________________________________________________

Maple [B]  time = 0.268, size = 287, normalized size = 1.5 \begin{align*} -{\frac{e}{4\,ac}\sqrt{ex+d} \left ( ex+{\frac{1}{c}\sqrt{ac{e}^{2}}} \right ) ^{-1}}+{\frac{ced}{2\,a}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-{\frac{e}{4\,a}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -cd+\sqrt{ac{e}^{2}} \right ) c}}}}-{\frac{e}{4\,ac}\sqrt{ex+d} \left ( ex-{\frac{1}{c}\sqrt{ac{e}^{2}}} \right ) ^{-1}}+{\frac{ced}{2\,a}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ac{e}^{2}}}}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}}+{\frac{e}{4\,a}{\it Artanh} \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( cd+\sqrt{ac{e}^{2}} \right ) c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(-c*x^2+a)^2,x)

[Out]

-1/4*e/c/a*(e*x+d)^(1/2)/(e*x+(a*c*e^2)^(1/2)/c)+1/2*e*c/a/(a*c*e^2)^(1/2)/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*ar
ctan((e*x+d)^(1/2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2))*d-1/4*e/a/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctan((e*x+
d)^(1/2)*c/((-c*d+(a*c*e^2)^(1/2))*c)^(1/2))-1/4*e/c/a*(e*x+d)^(1/2)/(e*x-(a*c*e^2)^(1/2)/c)+1/2*e*c/a/(a*c*e^
2)^(1/2)/((c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)^(1/2))*c)^(1/2))*d+1/4*e/a/((
c*d+(a*c*e^2)^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c/((c*d+(a*c*e^2)^(1/2))*c)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x + d}}{{\left (c x^{2} - a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(-c*x^2+a)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/(c*x^2 - a)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 2.06153, size = 2573, normalized size = 13.26 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(-c*x^2+a)^2,x, algorithm="fricas")

[Out]

-1/8*((a*c*x^2 - a^2)*sqrt((4*c*d^3 - 3*a*d*e^2 + (a^3*c^2*d^2 - a^4*c*e^2)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c^4*
d^2*e^2 + a^5*c^3*e^4)))/(a^3*c^2*d^2 - a^4*c*e^2))*log(-(4*c*d^2*e^3 - a*e^5)*sqrt(e*x + d) + (a^2*c*d*e^4 -
(2*a^3*c^4*d^4 - 3*a^4*c^3*d^2*e^2 + a^5*c^2*e^4)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4)))*s
qrt((4*c*d^3 - 3*a*d*e^2 + (a^3*c^2*d^2 - a^4*c*e^2)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4))
)/(a^3*c^2*d^2 - a^4*c*e^2))) - (a*c*x^2 - a^2)*sqrt((4*c*d^3 - 3*a*d*e^2 + (a^3*c^2*d^2 - a^4*c*e^2)*sqrt(e^6
/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4)))/(a^3*c^2*d^2 - a^4*c*e^2))*log(-(4*c*d^2*e^3 - a*e^5)*sqrt(
e*x + d) - (a^2*c*d*e^4 - (2*a^3*c^4*d^4 - 3*a^4*c^3*d^2*e^2 + a^5*c^2*e^4)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c^4*
d^2*e^2 + a^5*c^3*e^4)))*sqrt((4*c*d^3 - 3*a*d*e^2 + (a^3*c^2*d^2 - a^4*c*e^2)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c
^4*d^2*e^2 + a^5*c^3*e^4)))/(a^3*c^2*d^2 - a^4*c*e^2))) + (a*c*x^2 - a^2)*sqrt((4*c*d^3 - 3*a*d*e^2 - (a^3*c^2
*d^2 - a^4*c*e^2)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4)))/(a^3*c^2*d^2 - a^4*c*e^2))*log(-(
4*c*d^2*e^3 - a*e^5)*sqrt(e*x + d) + (a^2*c*d*e^4 + (2*a^3*c^4*d^4 - 3*a^4*c^3*d^2*e^2 + a^5*c^2*e^4)*sqrt(e^6
/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4)))*sqrt((4*c*d^3 - 3*a*d*e^2 - (a^3*c^2*d^2 - a^4*c*e^2)*sqrt(
e^6/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4)))/(a^3*c^2*d^2 - a^4*c*e^2))) - (a*c*x^2 - a^2)*sqrt((4*c*
d^3 - 3*a*d*e^2 - (a^3*c^2*d^2 - a^4*c*e^2)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4)))/(a^3*c^
2*d^2 - a^4*c*e^2))*log(-(4*c*d^2*e^3 - a*e^5)*sqrt(e*x + d) - (a^2*c*d*e^4 + (2*a^3*c^4*d^4 - 3*a^4*c^3*d^2*e
^2 + a^5*c^2*e^4)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4)))*sqrt((4*c*d^3 - 3*a*d*e^2 - (a^3*
c^2*d^2 - a^4*c*e^2)*sqrt(e^6/(a^3*c^5*d^4 - 2*a^4*c^4*d^2*e^2 + a^5*c^3*e^4)))/(a^3*c^2*d^2 - a^4*c*e^2))) +
4*sqrt(e*x + d)*x)/(a*c*x^2 - a^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(-c*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(-c*x^2+a)^2,x, algorithm="giac")

[Out]

Timed out